
 Journal of Accessibility and Design for All

(CC) JACCES, 2014 - 4(3): 161-176. ISSN: 2013-7087 DOI: 10.17411/jacces.v4i3.49

J.G. Víctores, S. Morante, A. Jardón, C. Balaguer 161

AN ACCESSIBLE INTERFACE FOR PROGRAMMING AN

ASSISTIVE ROBOT

Juan G. Victores1, Santiago Morante2, Alberto Jardón Huete3, Carlos

Balaguer4

ORCID: 0000-0002-3080-34671, 0000-0003-4933-76942, 0000-0002-3734-74923, 0000-0003-4864-46254

Robotics Lab research group, Universidad Carlos III de Madrid (Leganés) Spain

jcgvicto@ing.uc3m.es1, smorante@ing.uc3m.es2, ajardon@ing.uc3m.es3,

balaguer@ing.uc3m.es4

Abstract: In this paper, we present an accessible interface in the context of

our work on bringing advanced robotics closer to everyday domestic users.

This interface allows inexperienced users to be capable of programming an

assistive robotic arm to perform a specific desired task in a household

environment. The programming process is performed through the developed

Web Browsable interface, within which a Task Creator Wizard plays an

essential role. The robot's open architecture enables flexible multi-modal

interaction. In addition to the touch buttons provided by the Web Browsable

interface when presented on a touch screen, voice commands and the use of

the Wii RemoteTM controller for intuitive robotic movement have also been

enabled. The Web Browsable interface has been designed to provide high

accessibility while taking aesthetic details into account, in order to prevent

distraction caused by boredom of the user.

Keywords: Assistive Robot, Graphical Interface, Usability, User-Centered

Design.

Introduction

In our everyday lives, we are increasingly being surrounded by modern

technologies. Advanced electronics are exponentially embedded in

mailto:jcgvicto@ing.uc3m.es
mailto:smorante@ing.uc3m.es
mailto:ajardon@ing.uc3m.es
mailto:balaguer@ing.uc3m.es

Journal of Accessibility and Design for All

(CC) JACCES, 2014 - 4(3): 161-176. ISSN: 2013-7087

162 An accessible interface for programming an assistive robot

smartphones, tablet PCs, ebooks. Inexperienced people and even young

children are able to interact with touch screens or buttons, navigating

through tabs, menus, and icons (Holzinger, 2003). This fact provides

the reason for existence of end-user developments (EUD) (Burnett & Scaffidi,

2011). With all the possibilities for efficiency and improvement of EUD, some

researchers have already begun to see the potential of web applications

(Rode, Rosson, & Qui, 2006) and alternative controllers (Guo & Sharlin,

2008). Web interfaces can additionally provide several potential benefits,

such as ubiquitous availability, and public access if desired.

All of these advances are also being progressively incorporated in the field of

robotics, although perhaps at a slower pace. Robotics and automation are

fields that are first commercially developed for industrial environments,

with non-friendly interfaces, requiring technical training for personnel.

However, recent works such as Baxter (Guizzo & Ackerman, 2012) are now

taking the user-oriented point of view into account, aiming at simplifying

industrial manipulator programming.

From the steady regime of production plants, robotics and automation

technology can now be found in retail stores, and ultimately, in home

environments. In their broadest scope, robotics and automation include

everything from motorized shutters and vacuums to less common advanced

robotic manipulators (Iocchi, Ruiz-del-Solar, & Van der Zant, 2012). Current

worldwide research focuses on how to introduce dynamic and mobile

elements to perform “household chores” and daily tasks that require

complex manipulation and advanced reasoning skills. These technologies will

begin to make our life easier only with the development of human-robot

interfaces that provide comfort and satisfaction to the user (Kim, Oh, Choi,

Jung, & Kim, 2011). In this paper, the authors propose the merger of

robotics with technology that everyday users can be familiar with, such as

web browsing, voice commanded control, and video-game controllers, and

present proof-of-concept Open Source implementations and documentation

with experimental results.

Journal of Accessibility and Design for All

(CC) JACCES, 2014 - 4(3): 161-176. ISSN: 2013-7087

J.G. Víctores, S. Morante, A. Jardón, C. Balaguer 163

These developments have taken place using an assistive robotic arm, which

is currently located in an assistive living kitchen test environment. The

following is a review of some of the assistive robotic arm's most important

features and characteristics.

 Full on-board robot control and communications, with no need for an

external control cabinet.

 Unlimited workspace through power supply climbing connectors.

 Light-weight symmetrical structure for climbing.

 Tool exchange system for grippers, utensils, sponge, etc.

 Portable and friendly interfaces adapted to different levels of user

diversities and preferences.

 Open architecture for flexible component integration.

These last two features are the ones that have been mostly exploited by the

authors in this paper, in order to extend the reach of their developments to

the hands of everyday home domestic users.

Methodology

To provide an accessible interface for a system as complex as an assistive

robotic arm, an open architecture must be provided. We provide this open

architecture through the use of the YARP robotics platform (Fitzpatrick,

2008), that enables multi-modal interaction by providing a flexible and

robust implementation of the publisher/subscriber paradigm. This platform

is lightweight enough for our embedded system, and provides multi-lingual

and multi-platform support combined with easiness of use for a great range

of possible developer profiles (Victores, 2010). The developed YARP modules

are intended to a run within the Wireless Local Area Network (WLAN) of the

robot, but the user is free to expose the interface connections for external

assistants to collaborate, remotely interacting with the modules from a

distant location.

A simulator environment is crucial for an initial training phase, to allow end

users to practice with the assistive robotic arm before handling it in the real

Journal of Accessibility and Design for All

(CC) JACCES, 2014 - 4(3): 161-176. ISSN: 2013-7087

164 An accessible interface for programming an assistive robot

physical environment. The simulator used is OpenRAVE (Diankov, 2010),

given that it is lightweight, modular, and exposes an application programmer

interface to its core libraries. The default environment it is set to load is the

robot’s assistive living kitchen test environment (Fig. 1). Robot sensors and

cameras are also incorporated in the simulated 3D environment to provide a

higher degree of realism and fidelity.

Figure 1. The simulator is set to load the robot’s assistive kitchen model

One of the main objectives of our assistive robotic arm research and

software development of the past years has been to provide integrated

modes of Human-Robot Interaction (HRI) through devices with which users

can already be previously acquainted with, therefore allowing them to

immediately start discovering how to control the robot platform through the

interface devices instead of using time learning how to use a new specific

interface device. The robot system’s open architecture methodology

additionally allows the control interface devices to be used simultaneously.

These device modules are all managed coherently by the system.

Touch Buttons

The robot’s Web Browsable interface is intended for display on devices that

support tactile interaction. It is composed by nine functional tabs (Home,

Journal of Accessibility and Design for All

(CC) JACCES, 2014 - 4(3): 161-176. ISSN: 2013-7087

J.G. Víctores, S. Morante, A. Jardón, C. Balaguer 165

Joint, Cartesian, Program, Speech, Assigner, Launcher, Video, and Docking).

A persistent Connection Manager for establishing and terminating

communications with the real robot and with the simulator is set to be

rendered at the bottom left corner of the browser window. The client side

scripts of the pages served have been optimized to minimize the amount of

client-server interactions that take place.

Wii Remote controller integration

A Wii Remote Plus controller interface module has been developed as part of

the robot’s open architecture components for multi-modal interaction. The

controller’s A and B buttons control forward and backward movement

functionalities respectively, while maintaining both buttons pressed allows

plain reorientation. The robot tip aligns with the Wii-Remote controller

pitch, and the robot's base roll is controlled with the controller roll (Fig. 2).

Figure 2. The Wii Remote orientation is tracked with a fixed linear velocity

Journal of Accessibility and Design for All

(CC) JACCES, 2014 - 4(3): 161-176. ISSN: 2013-7087

166 An accessible interface for programming an assistive robot

Automatic Speech Recognition

The robot's automatic speech recognition has been integrated into the Web

Browsable interface as a selectable tab. The page served (Fig. 3) contains a

speech recognition input field for recording and saving commands which can

later be assigned to different tasks.

Figure 3. The robot modules provide speech recognition for HRI

The input field makes use of the x-webkit-speech attribute, linking the field

to the Google Inc. implementation of the HTML5 Speech Input API (currently

a W3C Editor's Draft (Sampath & Bringert, 2010)) by default. The Google Inc.

implementation of the x-webkit-speech attribute uses Google's service cloud

to perform the actual speech recognition, which returns a plain text string

that the robot stores in its User Program Repository.

If the final system is not going to have access to a constant Internet

connection, a local, but more limited, speech recognition mechanism may be

used. This solution is based on PocketSphinx, part of the CMU Sphinx -

Speech Recognition Toolkit (Huggins-Daines et al., 2006). This software is

more accurate when a reduced dictionary (or ‘corpus’) of words is used. The

corpus used is formed by common relevant words, including: color names,

daily life activities (give, bring, wash, etc.), pronouns, and domestic objects

(can, water, fridge, door, etc.). Once the corpus language model has been

Journal of Accessibility and Design for All

(CC) JACCES, 2014 - 4(3): 161-176. ISSN: 2013-7087

J.G. Víctores, S. Morante, A. Jardón, C. Balaguer 167

created, the use is the same as if it were using the Google service cloud

alternative. This local method is very robust to pronunciation and external

noise, but lacks flexibility because its results are limited to the words

contained within the developed corpus.

Task Creator Wizard

The robot Web Browsable Task Creator Wizard has been developed to guide

the user through the task creation process from within the robot Web

Browsable interface. A robot task is composed by one or several custom or

predefined programs that the user may invoke through the use of one or

more of the open architecture's multi-modal interfaces. The Task Creator

Wizard is initialized from within the Web Browsable interface homepage. It

is set to display useful user guide information in the form of prompts and

alerts. The use of the Wizard is, however, not mandatory. The user may

instead choose to browse through the tabs manually to develop robot tasks.

First, once activated, the Wizard automatically redirects the user to the

Joint space movement tab (Fig. 4). The tab is invoked so that a progress bar

is displayed on the bottom right corner of the page. It indicates how

advanced the user is in the task creation process, and allows the user to

jump to each next step throughout the entire creative process.

Journal of Accessibility and Design for All

(CC) JACCES, 2014 - 4(3): 161-176. ISSN: 2013-7087

168 An accessible interface for programming an assistive robot

Figure 4. A progress bar guides the user throughout the whole creative
process

As previously mentioned, the user can establish connections with the real

and the simulated robot using the persistent Connection Manager situated at

the bottom left of the interface. Once the connections are established, the

user can move the selected robots in the Joint space using the correspondent

tab buttons.

Additionally, the user can press the capture button (the round red Record

icon situated at the center-right of the same Fig. 4) to open a prompt for

saving the robot’s tip point with a custom name. The robot’s tip point

position and orientation information that is stored is computed when the

user clicks on the capture button, which may occur even if the robot is in

movement. This behavior has also been implemented in the Cartesian space

movement tab (Fig. 5), which is the next step the user is guided through.

Journal of Accessibility and Design for All

(CC) JACCES, 2014 - 4(3): 161-176. ISSN: 2013-7087

J.G. Víctores, S. Morante, A. Jardón, C. Balaguer 169

Figure 5. Points may be captured even when the robot is in movement

The capture button of either of these two tabs, namely the Joint space

movement tab and the Cartesian Space movement tab, may additionally be

used to capture points when the robot is moved by using the Wii Remote Plus

controller interface. On the completion of this point capturing phase of the

Task Creation process, the user is guided by the Wizard to the Program tab

(see Fig. 6). Here, the user can create, edit, save and delete robot programs

directly from within the Web Browsable interface.

The robot Web Browsable interface Program tab plays the role of an

Integrated Development Environment (IDE) for developing robot user Python

programs. The left side panel allows the user to create, explore and delete

robot user Python programs. When the user decides to create a new

program, the IDE returns a new file with a snippet of default source code.

This source code is extracted from a template file which is set to load the

basic resources for programming the robot (libraries, initialization routine

calls). Additionally, some hint lines of code are added for connecting to a

remote instance of the robot or simulation control module, performing a

robot homing movement, waiting, and closing the module cleanly.

Journal of Accessibility and Design for All

(CC) JACCES, 2014 - 4(3): 161-176. ISSN: 2013-7087

170 An accessible interface for programming an assistive robot

Figure 6. The robot Web Browsable interface Program Tab

The Program tab additionally provides a set of buttons with the captured

point names, situated on the top part of its right side panel. Clicking on this

type of button inserts two lines of code into the central program text area:

• A Point definition. The definition of the point that was captured and

given the name that the button indicates.

• A Cartesian space movement command. The robot is commanded

from its current position to the point indicated, following a straight

line trajectory (a MOVL command).

A robot Python point is defined as a native Python list of doubles that

indicate the position and orientation of the robot tip in absolute base

coordinates. The MOVL member function calls may also be modified and

transformed into MOVJ function calls. Movements due to MOVJ function calls

are, generally speaking, faster but less precise (trajectory-wise) than those

issued by MOVL commands. This is because MOVL commands involve the

computation of a straight linear trajectory, whereas MOVJ commands involve

trajectory interpolation at single joint level. This nomenclature is commonly

found in the context of industrial robots, and the authors have particularly

been inspired by the RAPID, an ABB proprietary programming language (ABB,

2005).

Journal of Accessibility and Design for All

(CC) JACCES, 2014 - 4(3): 161-176. ISSN: 2013-7087

J.G. Víctores, S. Morante, A. Jardón, C. Balaguer 171

Once the user has finished programming, she or he will be prompted to save

the program with a custom name by pressing the save button. The Wizard

then guides the user to the Speech tab. In the Speech tab, the user records

and saves words that will be assigned to programs in the Task Creator final

step, the Assigner tab (seen in Fig. 7). The Assigner tab is composed by

program, recorded word, and icon selectors to generate robot task files,

which are minimalistic scripts that link these three elements.

The Task Creator Wizard leads the user to the robot Web Browsable

interface Launcher tab once the assignment has been performed. The

Launcher parses the task files and presents the selected icons zoomed as

touch buttons on screen, waiting for user tactile interaction or voice

commands to execute the tasks that the user has developed through the use

of the multi-modal interfaces, with or without the use of the interface's Task

Creator Wizard.

Figure 7. The robot Web Browsable interface Assigner Tab

Results

In order to perform a complete system assessment, we conducted two

different tests: one with people that were previously inexperienced with

robotics, and one with robotics-related people who were familiar with the

Journal of Accessibility and Design for All

(CC) JACCES, 2014 - 4(3): 161-176. ISSN: 2013-7087

172 An accessible interface for programming an assistive robot

robot. The reason for this double-test was to include the not-so-common

opinion of developers or technology-skilled users to the common analysis of

inexperienced people. The comments and suggestions of technology-skilled

users can be useful to assure an easy teaching process, as at a certain point

they could actually become the people in charge of training disabled people

in handling high-tech adapted devices.

In the first test, the ten healthy inexperienced users in robotics were invited

to the robot assistive living kitchen environment and attended a five-day

course for two hour sessions each day. At the end of the entire course,

where they were explained how the system and the robot work, they were

asked to use the developed interface presented for the creation of a

common domestic task: grabbing a red can from a table. This is a task which

we already knew that the robot was capable of performing (Fig. 8).

Figure 8. The robot “Grab a red can from a table” task achievement

To evaluate their experiences, we performed spoken interviews at the end

of the five-day course. This type of feedback (instead of regulated tables or

forms) was chosen because these non-experienced people found it easier to

express their sensations by speaking naturally. They were all asked the same

set of questions, about pros and cons, comfortability, complexity, and main

drawbacks. The following is a summary of the answer received:

Journal of Accessibility and Design for All

(CC) JACCES, 2014 - 4(3): 161-176. ISSN: 2013-7087

J.G. Víctores, S. Morante, A. Jardón, C. Balaguer 173

• From a domestic point of view, all of the users found the use of the

proposed multi-modal interfaces (touch buttons, voice commands,

and automatic speech recognition) very interesting and useful.

• Each of the users found a device that best fit their necessities to use

the Web Browsable interface for comfortably interacting with the

assistive robotic arm.

• All of the users were capable of generating several voice patterns

that could be recognized by the Internet version of the automatic

speech recognition system.

• Every user was able to make the robot grab the red can from the

table successfully. From our professional experience, similar courses

with industrial robots and controllers indicate a time closer to two

weeks for performing a similar task.

• Two users evaluated the programming performed with the Wii Remote

controller negatively. The reason was having to sustain the

implemented “dead man”' buttons while moving the controller. They

found it uncomfortable and counterintuitive.

In the second test, we asked ten robotics researchers to perform the same

task, without the five-day course, and only a brief introduction to the

system. To measure their satisfaction with the system, we provided them

with standard SUS tests (System Usability Scale). The reason behind this

difference in tests between robotics and non-robotics people is because,

with the technological people, we were aiming toward system improvements

beyond those that can be pointed out by inexperienced users. The following

are the SUS results:

• The total average punctuation of the system was 70.5 ± 9.5 over 100

(where 100 is the best score).

• The best results were obtained in the statement: “I think that I would

like to use this system frequently”. Its numerical result was 4 ± 0.6

over 5 (where 5 is the best score).

Journal of Accessibility and Design for All

(CC) JACCES, 2014 - 4(3): 161-176. ISSN: 2013-7087

174 An accessible interface for programming an assistive robot

• The worst results were obtained in the statement: “I think that I

would need the support of a technical person to be able to use this

system". Its numerical result was 2.6 ± 0.8 over 5 (where 5 is the

worst score).

As a general overview, experiences were positive and the feedback received

from robotics people indicates us where to improve the programming for a

lighter and faster browsing interaction.

Conclusions

The presented interface has proved to be a feasible and useful way to

program an assistive robot for common activities in a domestic environment.

Its multi-modal tools and its commercial off-the-shelf device integration

(e.g. Wii Remote controller) enable the possibility of interacting with robots

in a different way, which may result more accessible for certain people with

special necessities. We ensure accessibility for all kinds of people, taking

into account the fact that industrial robots are known for their use of their

own, expensive and complex, programming elements. The presented system

may be accessed from any kind of device with Internet capabilities.

The Task Creator Wizard ensures a complete process of programming a

complex action, without having any knowledge of programming. This is a

major advance towards the domestic introduction of advanced robotics.

Additionally, the use of visually relevant icons helps to easily recognize pre-

recorded tasks. The feedback received from the users has helped us

understand where to focus future research efforts. The presented system

gets closer to the original aim of the assistive robotic arm, which is to aid

disabled and elderly people.

Journal of Accessibility and Design for All

(CC) JACCES, 2014 - 4(3): 161-176. ISSN: 2013-7087

J.G. Víctores, S. Morante, A. Jardón, C. Balaguer 175

Acknowledgments

The research leading to these results has received funding from the ARCADIA

project DPI2010-21047-C02-01 granted by CICYT.

References

[1] ABB. (2005). Rapid reference manual system data types and routines

on-line. For BaseWare OS 3.1

[2] Burnett, Margaret M. & Scaffidi, C. (2011). End-user development. in

Encyclopedia of Human-Computer Interaction.

[3] Diankov, R. (2010). Automated construction of robotic manipulation

programs. Carnegie Mellon University.

[4] Fitzpatrick, P., Metta, G., & Natale, L. (2008). Towards long-lived

robot genes. Robotics and Autonomous systems, 56(1), 29-45.

[5] Guizzo, E., & Ackerman, E. (2012). The Rise of the ROBOT WORKER.

Spectrum, IEEE, 49(10), 34-41.

[6] Guo, C., & Sharlin, E. (2008, April). Exploring the use of tangible user

interfaces for human-robot interaction: a comparative study. In

Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems (pp. 121-130). ACM.

[7] Holzinger, A. (2003). Finger instead of mouse: touch screens as a

means of enhancing universal access. In Universal Access Theoretical

Perspectives, Practice, and Experience (pp. 387-397). Springer Berlin

Heidelberg.

[8] Huggins-Daines, D., Kumar, M., Chan, A., Black, A. W., Ravishankar,

M., & Rudnicky, A. I. (2006). Pocketsphinx: A free, real-time

continuous speech recognition system for hand-held devices. In

Acoustics, Speech and Signal Processing, 2006. ICASSP 2006

Journal of Accessibility and Design for All

(CC) JACCES, 2014 - 4(3): 161-176. ISSN: 2013-7087

176 An accessible interface for programming an assistive robot

Proceedings. 2006 IEEE International Conference on (Vol. 1, pp. I-I).

IEEE.

[9] Iocchi, L., Ruiz-del-Solar, J., & Van der Zant, T. (2012). Domestic

Service Robots in the Real World. Journal of Intelligent & Robotic

Systems, 66(1), 183-186.

[10] Kim, M., Oh, K., Choi, J., Jung, J., & Kim, Y. (2011). User-Centered

HRI: HRI Research Methodology for Designers. In Mixed Reality and

Human-Robot Interaction (pp. 13-33). Springer Netherlands.

[11] Rode, J., Rosson, M. B., & Qui, M. A. P. (2006). End user development

of web applications. In End User Development (pp. 161-182). Springer

Netherlands.

[12] Sampath, S. & Bringert, B. (2010). Speech input api specification.

W3C Editor’s Draft 18.

[13] Victores, Juan G. (2010). Software engineering techniques applied to

assistive robotics: Guidelines & tools. Master thesis. Dept. Syst. Eng.

Autom. Univ. Carlos II of Madrid, Spain.

J.G. Víctores, S. Morante, A. Jardón, C. Balaguer 177

JACCES
ISSN: 2013-7087

Twitter: @Journal_JACCES LinkedIn: JACCES

www.jacces.org

©© Journal of Accessibility and Design for All, 2010

Article's contents are provided on an Attribution-NonCommercial 3.0 Creative
commons license. Readers are allowed to copy, distribute and communicate article's

contents, provided the author's and Journal of Accessibility and Design for All's names are
included. It must not be used for commercial purposes. To see the complete license

contents, please visit http://creativecommons.org/licenses/by-nc/3.0/.

JACCES is committed to providing accessible publication to all, regardless of
technology or ability. Present document grants strong accessibility since it applies to

WCAG 2.0 and PDF/UA recommendations. Evaluation tool used has been Adobe
Acrobat® Accessibility Checker. If you encounter problems accessing content of this

document, you can contact us at jacces@catac.upc.edu.

https://twitter.com/Journal_JACCES
https://www.linkedin.com/company/jacces-journal-of-accessibility-and-design-for-all?trk=company_name
http://www.jacces.org/
http://creativecommons.org/licenses/by-nc/3.0/
mailto:jacces@catac.upc.edu

	AN ACCESSIBLE INTERFACE FOR PROGRAMMING AN ASSISTIVE ROBOT
	Introduction
	Methodology
	Touch Buttons
	Wii Remote controller integration
	Automatic Speech Recognition
	Task Creator Wizard

	Results
	Conclusions
	Acknowledgments
	References

